9 research outputs found

    Application of Random Walk Model for Timing Recovery in Modern Mobile SATCOM Systems

    Get PDF
    In a modern mobile satellite communication (SATCOM) system, a ground terminal receiver receives a radio frequency signal that is demodulated to generate a baseband digital signal waveform containing a self-clocking bit stream of digital data. The received baseband digital signal waveform is recovered and tracked using a timing recovery loop (TRL). The traditional TRLs use early-and-late gates, digital transition tracking, filter-and-square, and delay-and-multiply functions. In bit timing detection, the bit stream is self-clocking and the timing differential dithers about correct bit timing in the TRLs. For mobile satellite communication environments, the traditional TRLs drop lock when the loop signal-to-noise ratio (SNR) is smaller than a threshold value or the residual Doppler frequency is larger than the operating loop bandwidth. After dropping lock, the traditional TRLs experience long hang up time due to the need to reacquire the timing pulses. Recently, random walk filters (RWF) have been adapted to improve the bit clock locking stability and are applied to recover bit timing information of a digital data stream. This chapter describes random walk model for timing jitter and discusses how RWF solution can address the timing recovery challenges in mobile satellite communication environments

    War-Gaming Applications for Achieving Optimum Acquisition of Future Space Systems

    Get PDF
    This chapter describes an innovative modeling and simulation approach using newly proposed Advanced Game-based Mathematical Framework (AGMF), Unified Game-based Acquisition Framework (UGAF) and a set of War-Gaming Engines (WGEs) to address future space systems acquisition challenges. Its objective is to assist the DoD Acquisition Authority (DAA) to understand the contractor’s perspective and to seek optimum Program-and-Technical-Baseline (PTB) solution and corresponding acquisition strategy under both the perspectives of the government and the contractors. The proposed approach calls for an interdisciplinary research that involves game theory, probability and statistics, and non-linear programming. The goal of this chapter is to apply the proposed war-gaming frameworks to develop and evaluate PTB solutions and associated acquisition strategies in the context of acquisition of future space systems. Our simulation results suggest that our optimization problem for the acquisition of future space systems meets the affordability and innovative requirements with minimum acquisition risk

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Acquisition War-Gaming Technique for Acquiring Future Complex Systems: Modeling and Simulation Results for Cost Plus Incentive Fee Contract

    No full text
    This paper provides a high-level discussion and propositions of frameworks and models for acquisition strategy of complex systems. In particular, it presents an innovative system engineering approach to model the Department of Defense (DoD) acquisition process and offers several optimization modules including simulation models using game theory and war-gaming concepts. Our frameworks employ Advanced Game-based Mathematical Framework (AGMF) and Unified Game-based Acquisition Framework (UGAF), and related advanced simulation and mathematical models that include a set of War-Gaming Engines (WGEs) implemented in MATLAB statistical optimization models. WGEs are defined as a set of algorithms, characterizing the Program and Technical Baseline (PTB), technology enablers, architectural solutions, contract type, contract parameters and associated incentives, and industry bidding position. As a proof of concept, Aerospace, in collaboration with the North Carolina State University (NCSU) and University of Hawaii (UH), successfully applied and extended the proposed frameworks and decision models to determine the optimum contract parameters and incentives for a Cost Plus Incentive Fee (CPIF) contract. As a result, we can suggest a set of acquisition strategies that ensure the optimization of the PTB

    War-Gaming Application for Future Space Systems Acquisition: MATLAB Implementation of War-Gaming Acquisition Models and Simulation Results

    No full text
    The paper describes the MATLAB (MathWorks) programs that were developed during the REU workshop1 to implement The Aerospace Corporation developed Unified Game-based Acquisition Framework and Advanced Game - based Mathematical Framework (UGAF-AGMF) and its associated War-Gaming Engine (WGE) models. Each game can be played from the perspectives of the Department of Defense Acquisition Authority (DAA) or of an individual contractor (KTR). The programs also implement Aerospace’s optimum “Program and Technical Baseline (PTB) and associated acquisition” strategy that combines low Total Ownership Cost (TOC) with innovative designs while still meeting warfighter needs. The paper also describes the Bayesian Acquisition War-Gaming approach using Monte Carlo simulations, a numerical analysis technique to account for uncertainty in decision making, which simulate the PTB development and acquisition processes and will detail the procedure of the implementation and the interactions between the games

    The Firm as Social Networks: An Organisational Perspective

    No full text
    This paper offers an organizational perspective on the firm in new economic geographies. It starts with the premise of the firm as a production function in neoclassical economics and a cost minimisation device in transaction cost economics. By pointing out the inadequacy in these mainstream economic perspectives on the firm, I draw upon recent behavioral and managerial theories to develop a relational conception of the firm as social networks in which actors are embedded in ongoing power relations and discursive processes. In further elaborating this relational perspective on the firm as an organisational device, I show how the firm is governed through social relations among different actors, how it is a site of contested ideologies and political representations among these actors, and how space and geographical scales matter in shaping its social construction. Taken together, this organisational perspective aims to shift our research agenda in urban and regional development from promoting the growth of the firm per se to understanding how the firm serves as a relational institution that connects spatially differentiated actors in different places and regions. Copyright 2005 Blackwell Publishing Ltd..

    Aptamer in Bioanalytical Applications

    No full text
    corecore